Sains Malaysiana 53(3)(2024): 591-604
http://doi.org/10.17576/jsm-2024-5303-09
Thymoquinone Reverses Homocysteine-Induced Endothelial
Dysfunction via Inhibition of Endoplasmic Reticulum-Stress Induced Oxidative
Stress Pathway
(Timoquinon Membalikkan Disfungsi Endotelium Aruhan Homosistein melalui Perencatan Laluan Tekanan Oksidatif Aruhan Retikulum Endoplasma)
SITI SARAH M. SOFIULLAH1,
DHARMANI DEVI MURUGAN2, SUHAILA ABD MUID3,4, WU YUAN SENG5,6,
NOR HISAM ZAMAKSHSHARI 7, QUAN FU GAN8, MELONNEY PATRICK 3,4,
NORASIKIN AB AZIS9, SRINIVASA RAO SIRASANAGANDLA10 & CHOY KER WOON1,*
1Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Petaling Jaya, Selangor, Malaysia
2Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
3Institute of Pathology, Laboratory and Forensic Medicine (I-PperForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Petaling Jaya, Selangor, Malaysia
4Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Petaling Jaya, Selangor, Malaysia
5Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
6Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
7Department of Chemistry, Faculty of Resources Science and Technology, University Malaysia Sarawak, Kota Samarahan, 94300, Kuching, Sarawak, Malaysia
8Pre-clinical Department, Faculty of Medicine and Health Science, UTAR Sg Long Campus, 43000 Kajang, Selangor, Malaysia
9Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Selangor, Malaysia
10Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Al-Khoud, Muscat, Oman
Received: 31
July 2023/Accepted: 9
February 2024
Abstract
Hyperhomocysteinemia causes endoplasmic reticulum (ER)
stress, which elevates reactive oxygen species (ROS) and induces
endothelial dysfunction, the hallmark of cardiovascular diseases. Nigella sativa seeds contain thymoquinone (TQ), a cardioprotective bioactive component. Nevertheless, research on
investigating the effectiveness of TQ in preventing endothelial dysfunction
caused by homocysteine (Hcy) is scarce. Therefore,
the purpose of this work was to examine the role of TQ in restoring Hcy-induced endothelial dysfunction as well as the
mechanisms behind this role. Male Sprague-Dawley (SD) rat aortas were isolated
and then co-treated in an organ bath with Hcy and TQ, tauroursodeoxycholic acid (TUDCA), apocynin, or Tempol to examine
vascular function. Furthermore, human umbilical vein endothelial cells (HUVECs)
were treated with Hcy and TQ, Tempol, apocynin, TUDCA or H2O2 to
determine the cell viability via a phase contrast microscope and dye exclusion
test. ER stress pathway involvement, ROS and NO bioavailability were
investigated using immunoassays and fluorescence staining, respectively. The
binding affinity of TQ to GRP78 has been identified using molecular docking. According to
our findings, Hcy hindered endothelium-dependent
relaxation in an isolated aorta and caused apoptosis in HUVECs. TQ, TUDCA, Tempol, and apocynin were able to
counteract these negative effects. In HUVECs, treatment with TQ decreased ROS
levels, increased NO bioavailability, and decreased GRP78 and NOX4 protein.
According to the molecular docking study outcomes, TQ could attach to GRP78
effectively via a hydrogen bond and a hydrophobic connection to the amino acid
at GRP78 ATP binding pocket. Taken together, the findings show that TQ protected
endothelial function caused by Hcy via inhibiting ER
stress-mediated ROS and eNOS uncoupling.
Keywords: Endoplasmic reticulum stress; endothelial dysfunction; homocysteine;
oxidative stress; thymoquinone
Abstrak
Hiperhomosisteinemia meninggikan tekanan retikulum endoplasma (RE) yang boleh meningkatkan spesies oksigen reaktif (SOR), yang membawa kepada disfungsi endotelium sel dan penyakit kardiovaskular. BijiNigella sativa mengandungi timoquinon (TQ), komponen bioaktif berkardio-protektif. Walau bagaimanapun, tiada kajian yang menilai kesan TQ terhadap disfungsi endotelial yang disebabkan oleh homosistein (Hcy). Oleh itu, penyelidikan ini bertujuan untuk mengkaji kesan dan mekanisme TQ dalam menormalkan disfungsi endotelial yang disebabkan oleh Hcy. Aorta diasingkan daripada tikus Sprague-Dawley
(SD) jantan yang diinkubasi dengan Hcy dan dirawat bersama dengan atau tanpa TQ, TUDCA, apocynin atau Tempol dalam mandian organ untuk mengkaji fungsi vaskular. Di samping itu, sel endotelial vena umbilik manusia (HUVECs) diinkubasi dengan Hcy dan TQ, Tempol, apocynin, TUDCA atau H2O2 untuk menilai keviabelan sel dengan menggunakan mikroskop kontras fasa dan ujian pengecualian pewarna. Penglibatan laluan tekanan ER, ROS dan NO bioketersediaan diakses masing-masing melalui immunoasai dan pewarnaan pendarfluor. Dok molekul telah dilakukan untuk menilai pertalian mengikat TQ kepada
GRP78. Keputusan kami mendedahkan bahawa Hcy merosakkan disfungsi endotelial
dalam aorta dan apoptosis dalam HUVECs. Kesan
ini telah dinormalkan oleh TQ, TUDCA, Tempol dan apocynin. Rawatan dengan TQ
mengurangkan tahap ROS, meningkatkan bioketersediaan NO serta mengurangkan
protein GRP78 dan NOX4 dalam HUVECs. Hasil kajian dok molekul menunjukkan
bahawa TQ boleh mengikat dengan baik kepada GRP78 melalui ikatan hidrogen dan
interaksi hidrofobik dengan asid amino pada poket pengikat ATP GRP78.
Kesimpulannya, TQ membaikipulih fungsi endotelial yang dirosakkan oleh Hcy
melalui perencatan ROS pengantara tekanan ER dan meningkatkan bioketersediaan
NO.
Kata
kunci: Disfungsi endotelium; homosistein; tekanan oksidatif; tekanan retikulum endoplasma; timoquinon
References
Ahmad, A., Mishra, R.K., Vyawahare, A., Kumar, A., Rehman,
M.U., Qamar, W., Khan, A.Q. & Khan, R. 2019. Thymoquinone
(2-Isoprpyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent:
Chemistry and biological effects. Saudi
Pharm. J. 27(8): 1113-1126.
doi:10.1016/j.jsps.2019.09.008
Al-Madhagi, W.M., Hashim, N.M., Awadh Ali, N.A., Taha, H.,
Alhadi, A.A., Abdullah, A.A., Sharhan, O. & Othman, R. 2019.
Bioassay-guided isolation and in silico study of antibacterial compounds
from petroleum ether extract of Peperomia blanda (Jacq.) Kunth. J. Chem. Inf. Model 59(5): 1858-1872.
doi:10.1021/acs.jcim.8b00969
Allam, L., Ghrifi, F., Mohammed, H., El Hafidi, N., El
Jaoudi, R., El Harti, J., Lmimouni, B., Belyamani, L. & Ibrahimi, A. 2020.
Targeting the GRP78-dependant SARS-CoV-2 cell entry by peptides and small
molecules. Bioinform. Biol. Insights 14: 1177932220965505.
doi:10.1177/1177932220965505
Amanso, A.M., Debbas, V. & Laurindo, F.R. 2011.
Proteasome inhibition represses unfolded protein response and Nox4, sensitizing
vascular cells to endoplasmic reticulum stress-induced death. PloS ONE 6(1): e14591.
Amen, O.M., Sarker, S.D., Ghildyal, R. & Arya, A. 2019.
Endoplasmic reticulum stress activates unfolded protein response signaling and
mediates inflammation, obesity, and cardiac dysfunction: Therapeutic and
molecular approach. Frontiers in
Pharmacology 10. doi:10.3389/fphar.2019.00977
Ammar, E-S.M., Gameil, N.M., Shawky, N.M. & Nader, M.A.
2011. Comparative evaluation of anti-inflammatory properties of thymoquinone
and curcumin using an asthmatic murine model. International Immunopharmacology 11(12): 2232-2236.
Barroso, M., Kao, D., Blom, H.J., de Almeida, I.T., Castro,
R., Loscalzo, J. & Handy, D.E. 2016. S-adenosylhomocysteine induces
inflammation through NFkB: A possible role for EZH2 in endothelial cell
activation. Biochimica et Biophysica Acta
(BBA)-Molecular Basis of Disease 1862(1):
82-92.
Chang, L., Geng, B., Yu, F., Zhao, J., Jiang, H., Du, J.
& Tang, C. 2008. Hydrogen sulfide inhibits myocardial injury induced by
homocysteine in rats. Amino Acids 34: 573-585.
Chen, H., Zhuo, C., Zu, A., Yuan, S., Zhang, H., Zhao, J.
& Zheng, L. 2022. Thymoquinone ameliorates pressure overload‐induced
cardiac hypertrophy by activating the AMPK signalling pathway. Journal of Cellular and Molecular Medicine 26(3): 855-867.
Choy, K.W., Lau, Y.S., Murugan, D. & Mustafa, M.R. 2017.
Chronic treatment with paeonol improves endothelial function in mice through
inhibition of endoplasmic reticulum stress-mediated oxidative stress. PLoS ONE 12(5): e0178365. doi:10.1371/journal.pone.0178365
Da Silva, I.V., Barroso, M., Moura, T., Castro, R. &
Soveral, G. 2018. Endothelial aquaporins and hypomethylation: Potential
implications for atherosclerosis and cardiovascular disease. International Journal of Molecular Sciences 19(1): 130.
Dubey, G.P., Jain, D., Mishra, V.N., Dubey, S., Ojha, A.
& Kesharwani, R.K. 2022. Homocysteine-mediated endothelial dysfunction in
metabolic syndrome. In Homocysteine
Metabolism in Health and Disease, edited by Dubey, G.P., Misra, K.,
Kesharwani, R.K. & Ojha, R.P. Springer. pp. 51-70.
Eberhardt, J., Santos-Martins, D., Tillack, A.F. & Forli,
S. 2021. AutoDock Vina 1.2.0: New docking methods, expanded force field, and
python bindings. J. Chem. Inf. Model 61(8): 3891-3898.
doi:10.1021/acs.jcim.1c00203
El-Agamy, D.S. & Nader, M.A. 2012. Attenuation of
oxidative stress-induced vascular endothelial dysfunction by thymoquinone. Experimental Biology and Medicine 237(9): 1032-1038.
Farghaly, M.E., Khowailed, A.A., Aboulhoda, B.E., Rashed,
L.A., Gaber, S.S. & Ashour, H. 2022. Thymoquinone potentiated the
anticancer effect of cisplatin on hepatic tumorigenesis by modulating tissue
oxidative stress and endoplasmic GRP78/CHOP signaling. Nutr. Cancer 74(1):
278-287. doi:10.1080/01635581.2021.1879880
Goyal, S.N., Prajapati, C.P., Gore, P.R., Patil, C.R.,
Mahajan, U.B., Sharma, C., Talla, S.P. & Ojha, S.K. 2017. Therapeutic
potential and pharmaceutical development of thymoquinone: A multitargeted
molecule of natural origin. Frontiers in
Pharmacology 8: 656.
doi:10.3389/fphar.2017.00656
Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T.,
Zurek, E. & Hutchison, G.R. 2012. Avogadro: An advanced semantic chemical
editor, visualization, and analysis platform. Journal of Cheminformatics 4(1):
17. doi:10.1186/1758-2946-4-17
Haq, A., Lobo, P.I., Al-Tufail, M., Rama, N.R. &
Al-Sedairy, S.T. 1999. Immunomodulatory effect of Nigella sativa proteins fractionated by ion exchange chromatography. International Journal of Immunopharmacology 21(4): 283-295.
Kaplan, P., Tatarkova, Z., Sivonova, M.K., Racay, P. &
Lehotsky, J. 2020. Homocysteine and mitochondria in cardiovascular and
cerebrovascular systems. Int. J. Mol.
Sci. 21(20): 7698.
doi:10.3390/ijms21207698
Karimi, Z., Ghaffari, M., Ezzati Nazhad Dolatabadi, J. &
Dehghan, P. 2019. The protective effect of thymoquinone on
tert-butylhydroquinone induced cytotoxicity in human umbilical vein endothelial
cells. Toxicol. Res. (Camb) 8(6): 1050-1056. doi:10.1039/c9tx00235a
Kern, K., Sinningen, K., Engemann,
L., Maiß, C., Hanusch, B., Mügge, A., Lücke, T. & Brüne, M. 2022.
Homocysteine as a potential indicator of endothelial dysfunction and
cardiovascular risk in female patients with borderline personality disorder. Borderline Personality Disorder and Emotion
Dysregulation 9(1): 1-9.
Khader, M. & Eckl, P.M. 2014. Thymoquinone: An emerging
natural drug with a wide range of medical applications. Iran J. Basic Med. Sci. 17(12):
950-957.
Kosmas, C.E., Sourlas, A., Silverio, D., Montan, P.D. &
Guzman, E. 2019. Novel lipid-modifying therapies addressing unmet needs in
cardiovascular disease. World J. Cardiol. 11(11): 256-265.
doi:10.4330/wjc.v11.i11.256
Leung, S.B., Zhang, H., Lau, C.W., Huang, Y. & Lin, Z.
2013. Salidroside improves homocysteine-induced endothelial dysfunction by
reducing oxidative stress. Evid. Based
Complement Alternat. Med. 2013: 679635. doi:10.1155/2013/679635
Lindholm, D., Korhonen, L., Eriksson, O. & Kõks, S. 2017.
Recent insights into the role of unfolded protein response in ER stress in
health and disease. Frontiers in Cell and
Developmental Biology 5:
48. doi:10.3389/fcell.2017.00048
Loughlin, D.T. & Artlett, C.M. 2010. Precursor of
advanced glycation end products mediates ER-stress-induced caspase-3 activation
of human dermal fibroblasts through NAD (P) H oxidase 4. PLoS ONE 5(6):
e11093.
Mahadir Naidu, B., Mohd Yusoff, M.F., Abdullah, S., Musa,
K.I., Yaacob, N.M., Mohamad, M.S., Sahril, N. & Aris, T. 2019. Factors
associated with the severity of hypertension among Malaysian adults. PLoS ONE 14(1): e0207472. doi:10.1371/journal.pone.0207472
Mansour, M.A., Nagi, M.N., El‐Khatib, A.S. &
Al‐Bekairi, A.M. 2002. Effects of thymoquinone on antioxidant enzyme
activities, lipid peroxidation and DT‐diaphorase in different tissues of
mice: A possible mechanism of action. Cell
Biochemistry and Function 20(2):
143-151.
Medina-Leyte, D.J., Zepeda-García, O., Domínguez-Pérez, M.,
González-Garrido, A., Villarreal-Molina, T. & Jacobo-Albavera, L. 2021.
Endothelial dysfunction, inflammation and coronary artery disease: Potential
biomarkers and promising therapeutical approaches. Int. J. Mol. Sci. 22(8):
3850. doi:10.3390/ijms22083850
Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew,
R.K., Goodsell, D.S. & Olson, A.J. 2009. AutoDock4 and AutoDockTools4:
Automated docking with selective receptor flexibility. J. Comput. Chem. 30(16):
2785-2791. doi:10.1002/jcc.21256
Murugan, D.D., Md Zain, Z., Choy, K.W., Zamakshshari, N.H.,
Choong, M.J., Lim, Y.M. & Mustafa, M.R. 2020. Edible bird’s nest protects
against hyperglycemia-induced oxidative stress and endothelial dysfunction. Frontiers in Pharmacology 10: 1624.
doi:10.3389/fphar.2019.01624
Ochoa, C.D., Wu, R.F. & Terada, L.S. 2018. ROS signaling
and ER stress in cardiovascular disease. Molecular
Aspects of Medicine 63: 18-29. doi:https://doi.org/10.1016/j.mam.2018.03.002
Oslowski, C.M. & Urano, F. 2011. Measuring ER stress and
the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 490: 71-92. doi:10.1016/b978-0-12-385114-7.00004-0
Pai, P-Y., Chou, W-C., Chan, S-H., Wu, S-Y., Chen, H-I., Li,
C-W., Hsieh, P-L., Chu, P-M., Chen,
Y-A., Ou, H-C. & Tsai, K-L. 2021. Epigallocatechin gallate reduces
homocysteine-caused oxidative damages through modulation SIRT1/AMPK pathway in
endothelial cells. The American Journal
of Chinese Medicine 49(01):
113-129.
Panda, P., Verma, H.K., Lakkakula, S., Merchant, N., Kadir,
F., Rahman, S., Jeffree, M.S., Lakkakula Bhaskar, V.K.S. & Rao, P.V. 2022.
Biomarkers of oxidative stress tethered to cardiovascular diseases. Oxidative Medicine and Cellular Longevity 2022: 9154295.
doi:10.1155/2022/9154295
Reddy, R.K., Mao, C., Baumeister, P., Austin, R.C., Kaufman,
R.J. & Lee, A.S. 2003. Endoplasmic reticulum chaperone protein GRP78
protects cells from apoptosis induced by topoisomerase inhibitors: Role of ATP
binding site in suppression of caspase-7 activation. J. Biol. Chem. 278(23):
20915-20924. doi:10.1074/jbc.M212328200
Rotariu, D., Babes, E.E., Tit, D.M., Moisi, M., Bustea, C.,
Stoicescu, M., Radu, A-F., Vesa, C.M., Behl, T., Bungau, A.F. & Bungau,
S.G. 2022. Oxidative stress – Complex pathological issues concerning the
hallmark of cardiovascular and metabolic disorders. Biomedicine & Pharmacotherapy 152: 113238. doi:https://doi.org/10.1016/j.biopha.2022.113238
Sagud, M., Tudor, L. & Pivac, N. 2021. Personalized
treatment interventions: nonpharmacological and natural treatment strategies in
Alzheimer’s disease. Expert Review of
Neurotherapeutics 21(5):
571-589. doi:10.1080/14737175.2021.1906223
Santos, C.X., Tanaka, L.Y., Wosniak Jr., J. & Laurindo,
F.R. 2009. Mechanisms and implications of reactive oxygen species generation
during the unfolded protein response: Roles of endoplasmic reticulum
oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxidants & Redox Signaling 11(10): 2409-2427.
Sato, K., Nishii, T., Sato, A. & Tatsunami, R. 2020.
Autophagy activation is required for homocysteine-induced apoptosis in bovine
aorta endothelial cells. Heliyon 6(1): e03315. doi:https://doi.org/10.1016/j.heliyon.2020.e03315
Sies, H. & Jones, D.P. 2020. Reactive oxygen species
(ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology 21(7): 363-383. doi:10.1038/s41580-020-0230-3
Sipkens, J.A., Hahn, N., van den Brand, C.S., Meischl, C.,
Cillessen, S.A., Smith, D.E.C., Juffermans, L.J.M., Musters, R.J.P., Roos, D.,
Jakobs, C., Blom, H.J., Smulders, Y.M., Krijnen, P.A.J., Stehouwer, C.D.A.,
Rauwerda, J.A., van Hinsbergh, V.W.M. & Niessen, H.W.M. 2013.
Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2
and peri-nuclear NOX4 activity. Cell
Biochem. Biophys. 67(2):
341-352. doi:10.1007/s12013-011-9297-y
Timkova, V., Tatarkova, Z., Lehotsky, J., Racay, P., Dobrota,
D. & Kaplan, P. 2016. Effects of mild hyperhomocysteinemia on electron
transport chain complexes, oxidative stress, and protein expression in rat
cardiac mitochondria. Molecular and
Cellular Biochemistry 411: 261-270.
Ungvari, Z., Csiszar, A., Bagi, Z. & Koller, A. 2002.
Impaired nitric oxide-mediated flow-induced coronary dilation in
hyperhomocysteinemia: Morphological and functional evidence for increased
peroxynitrite formation. Am. J. Pathol. 161(1): 145-153. doi:10.1016/s0002-9440(10)64166-1
Vermot, A., Petit-Härtlein, I., Smith, S.M.E. & Fieschi,
F. 2021. NADPH oxidases (NOX): An overview from discovery, molecular mechanisms
to physiology and pathology. Antioxidants
(Basel) 10(6): 890.
doi:10.3390/antiox10060890
Wu, S., Gao, X., Yang, S., Meng, M., Yang, X. & Ge, B.
2015. The role of endoplasmic reticulum stress in endothelial dysfunction
induced by homocysteine thiolactone. Fundamental
& Clinical Pharmacology 29(3):
252-259.
Wu, X., Zhang, L., Miao, Y., Yang, J., Wang, X., Wang, C-C.,
Feng, J. & Wang, L. 2019. Homocysteine causes vascular endothelial
dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biology 20: 46-59.
Yuan, D., Chu, J., Lin, H., Zhu, G., Qian, J., Yu, Y., Yao,
T., Ping, F., Chen, F. & Liu, X. 2023. Mechanism of homocysteine-mediated
endothelial injury and its consequences for atherosclerosis. Frontiers in Cardiovascular Medicine 9: 1109445.
doi:10.3389/fcvm.2022.1109445
Zhang, Z., Wei, C., Zhou, Y., Yan, T., Wang, Z., Li, W. &
Zhao, L. 2017. Homocysteine induces apoptosis of human umbilical vein
endothelial cells via mitochondrial dysfunction and endoplasmic reticulum
stress. Oxid. Med. Cell Longev. 2017: 5736506.
doi:10.1155/2017/5736506
*Corresponding author; email: choykerwoon@uitm.edu.my
|