Sains Malaysiana 53(3)(2024): 591-604

http://doi.org/10.17576/jsm-2024-5303-09

 

Thymoquinone Reverses Homocysteine-Induced Endothelial Dysfunction via Inhibition of Endoplasmic Reticulum-Stress Induced Oxidative Stress Pathway

(Timoquinon Membalikkan Disfungsi Endotelium Aruhan Homosistein ​​melalui Perencatan Laluan Tekanan Oksidatif Aruhan Retikulum Endoplasma)

 

SITI SARAH M. SOFIULLAH1, DHARMANI DEVI MURUGAN2, SUHAILA ABD MUID3,4, WU YUAN SENG5,6, NOR HISAM ZAMAKSHSHARI 7, QUAN FU GAN8, MELONNEY PATRICK 3,4, NORASIKIN AB AZIS9, SRINIVASA RAO SIRASANAGANDLA10 & CHOY KER WOON1,*

1Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Petaling Jaya, Selangor, Malaysia
2Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
3Institute of Pathology, Laboratory and Forensic Medicine (I-PperForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Petaling Jaya, Selangor, Malaysia
4Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Petaling Jaya, Selangor, Malaysia
5Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
6Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
7Department of Chemistry, Faculty of Resources Science and Technology, University Malaysia Sarawak, Kota Samarahan, 94300, Kuching, Sarawak, Malaysia
8Pre-clinical Department, Faculty of Medicine and Health Science, UTAR Sg Long Campus, 43000 Kajang, Selangor, Malaysia
9Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Selangor, Malaysia
10Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Al-Khoud, Muscat, Oman

 

Received: 31 July 2023/Accepted: 9 February 2024

 

Abstract

Hyperhomocysteinemia causes endoplasmic reticulum (ER) stress, which elevates reactive oxygen species (ROS) and induces endothelial dysfunction, the hallmark of cardiovascular diseases. Nigella sativa seeds contain thymoquinone (TQ), a cardioprotective bioactive component. Nevertheless, research on investigating the effectiveness of TQ in preventing endothelial dysfunction caused by homocysteine (Hcy) is scarce. Therefore, the purpose of this work was to examine the role of TQ in restoring Hcy-induced endothelial dysfunction as well as the mechanisms behind this role. Male Sprague-Dawley (SD) rat aortas were isolated and then co-treated in an organ bath with Hcy and TQ, tauroursodeoxycholic acid (TUDCA), apocynin, or Tempol to examine vascular function. Furthermore, human umbilical vein endothelial cells (HUVECs) were treated with Hcy and TQ, Tempol, apocynin, TUDCA or H2O2 to determine the cell viability via a phase contrast microscope and dye exclusion test. ER stress pathway involvement, ROS and NO bioavailability were investigated using immunoassays and fluorescence staining, respectively. The binding affinity of TQ to GRP78 has been identified using molecular docking. According to our findings, Hcy hindered endothelium-dependent relaxation in an isolated aorta and caused apoptosis in HUVECs. TQ, TUDCA, Tempol, and apocynin were able to counteract these negative effects. In HUVECs, treatment with TQ decreased ROS levels, increased NO bioavailability, and decreased GRP78 and NOX4 protein. According to the molecular docking study outcomes, TQ could attach to GRP78 effectively via a hydrogen bond and a hydrophobic connection to the amino acid at GRP78 ATP binding pocket. Taken together, the findings show that TQ protected endothelial function caused by Hcy via inhibiting ER stress-mediated ROS and eNOS uncoupling.

 

Keywords: Endoplasmic reticulum stress; endothelial dysfunction; homocysteine; oxidative stress; thymoquinone

 

Abstrak

Hiperhomosisteinemia meninggikan tekanan retikulum endoplasma (RE) yang boleh meningkatkan spesies oksigen reaktif (SOR), yang membawa kepada disfungsi endotelium sel dan penyakit kardiovaskular. BijiNigella sativa mengandungi timoquinon (TQ), komponen bioaktif berkardio-protektif. Walau bagaimanapun, tiada kajian yang menilai kesan TQ terhadap disfungsi endotelial yang disebabkan oleh homosistein (Hcy). Oleh itu, penyelidikan ini bertujuan untuk mengkaji kesan dan mekanisme TQ dalam menormalkan disfungsi endotelial yang disebabkan oleh Hcy. Aorta diasingkan daripada tikus Sprague-Dawley (SD) jantan yang diinkubasi dengan Hcy dan dirawat bersama dengan atau tanpa TQ, TUDCA, apocynin atau Tempol dalam mandian organ untuk mengkaji fungsi vaskular. Di samping itu, sel endotelial vena umbilik manusia (HUVECs) diinkubasi dengan Hcy dan TQ, Tempol, apocynin, TUDCA atau H2O2 untuk menilai keviabelan sel dengan menggunakan mikroskop kontras fasa dan ujian pengecualian pewarna. Penglibatan laluan tekanan ER, ROS dan NO bioketersediaan diakses masing-masing melalui immunoasai dan pewarnaan pendarfluor. Dok molekul telah dilakukan untuk menilai pertalian mengikat TQ kepada GRP78. Keputusan kami mendedahkan bahawa Hcy merosakkan disfungsi endotelial dalam aorta dan apoptosis dalam HUVECs. Kesan ini telah dinormalkan oleh TQ, TUDCA, Tempol dan apocynin. Rawatan dengan TQ mengurangkan tahap ROS, meningkatkan bioketersediaan NO serta mengurangkan protein GRP78 dan NOX4 dalam HUVECs. Hasil kajian dok molekul menunjukkan bahawa TQ boleh mengikat dengan baik kepada GRP78 melalui ikatan hidrogen dan interaksi hidrofobik dengan asid amino pada poket pengikat ATP GRP78. Kesimpulannya, TQ membaikipulih fungsi endotelial yang dirosakkan oleh Hcy melalui perencatan ROS pengantara tekanan ER dan meningkatkan bioketersediaan NO.

 

Kata kunci: Disfungsi endotelium; homosistein; tekanan oksidatif; tekanan retikulum endoplasma; timoquinon

 

References

Ahmad, A., Mishra, R.K., Vyawahare, A., Kumar, A., Rehman, M.U., Qamar, W., Khan, A.Q. & Khan, R. 2019. Thymoquinone (2-Isoprpyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharm. J. 27(8): 1113-1126. doi:10.1016/j.jsps.2019.09.008

Al-Madhagi, W.M., Hashim, N.M., Awadh Ali, N.A., Taha, H., Alhadi, A.A., Abdullah, A.A., Sharhan, O. & Othman, R. 2019. Bioassay-guided isolation and in silico study of antibacterial compounds from petroleum ether extract of Peperomia blanda (Jacq.) Kunth. J. Chem. Inf. Model 59(5): 1858-1872. doi:10.1021/acs.jcim.8b00969

Allam, L., Ghrifi, F., Mohammed, H., El Hafidi, N., El Jaoudi, R., El Harti, J., Lmimouni, B., Belyamani, L. & Ibrahimi, A. 2020. Targeting the GRP78-dependant SARS-CoV-2 cell entry by peptides and small molecules. Bioinform. Biol. Insights 14: 1177932220965505. doi:10.1177/1177932220965505

Amanso, A.M., Debbas, V. & Laurindo, F.R. 2011. Proteasome inhibition represses unfolded protein response and Nox4, sensitizing vascular cells to endoplasmic reticulum stress-induced death. PloS ONE 6(1): e14591.

Amen, O.M., Sarker, S.D., Ghildyal, R. & Arya, A. 2019. Endoplasmic reticulum stress activates unfolded protein response signaling and mediates inflammation, obesity, and cardiac dysfunction: Therapeutic and molecular approach. Frontiers in Pharmacology 10. doi:10.3389/fphar.2019.00977

Ammar, E-S.M., Gameil, N.M., Shawky, N.M. & Nader, M.A. 2011. Comparative evaluation of anti-inflammatory properties of thymoquinone and curcumin using an asthmatic murine model. International Immunopharmacology 11(12): 2232-2236.

Barroso, M., Kao, D., Blom, H.J., de Almeida, I.T., Castro, R., Loscalzo, J. & Handy, D.E. 2016. S-adenosylhomocysteine induces inflammation through NFkB: A possible role for EZH2 in endothelial cell activation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1862(1): 82-92.

Chang, L., Geng, B., Yu, F., Zhao, J., Jiang, H., Du, J. & Tang, C. 2008. Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34: 573-585.

Chen, H., Zhuo, C., Zu, A., Yuan, S., Zhang, H., Zhao, J. & Zheng, L. 2022. Thymoquinone ameliorates pressure overload‐induced cardiac hypertrophy by activating the AMPK signalling pathway. Journal of Cellular and Molecular Medicine 26(3): 855-867.

Choy, K.W., Lau, Y.S., Murugan, D. & Mustafa, M.R. 2017. Chronic treatment with paeonol improves endothelial function in mice through inhibition of endoplasmic reticulum stress-mediated oxidative stress. PLoS ONE 12(5): e0178365. doi:10.1371/journal.pone.0178365

Da Silva, I.V., Barroso, M., Moura, T., Castro, R. & Soveral, G. 2018. Endothelial aquaporins and hypomethylation: Potential implications for atherosclerosis and cardiovascular disease. International Journal of Molecular Sciences 19(1): 130.

Dubey, G.P., Jain, D., Mishra, V.N., Dubey, S., Ojha, A. & Kesharwani, R.K. 2022. Homocysteine-mediated endothelial dysfunction in metabolic syndrome. In Homocysteine Metabolism in Health and Disease, edited by Dubey, G.P., Misra, K., Kesharwani, R.K. & Ojha, R.P. Springer. pp. 51-70.

Eberhardt, J., Santos-Martins, D., Tillack, A.F. & Forli, S. 2021. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model 61(8): 3891-3898. doi:10.1021/acs.jcim.1c00203

El-Agamy, D.S. & Nader, M.A. 2012. Attenuation of oxidative stress-induced vascular endothelial dysfunction by thymoquinone. Experimental Biology and Medicine 237(9): 1032-1038.

Farghaly, M.E., Khowailed, A.A., Aboulhoda, B.E., Rashed, L.A., Gaber, S.S. & Ashour, H. 2022. Thymoquinone potentiated the anticancer effect of cisplatin on hepatic tumorigenesis by modulating tissue oxidative stress and endoplasmic GRP78/CHOP signaling. Nutr. Cancer 74(1): 278-287. doi:10.1080/01635581.2021.1879880

Goyal, S.N., Prajapati, C.P., Gore, P.R., Patil, C.R., Mahajan, U.B., Sharma, C., Talla, S.P. & Ojha, S.K. 2017. Therapeutic potential and pharmaceutical development of thymoquinone: A multitargeted molecule of natural origin. Frontiers in Pharmacology 8: 656. doi:10.3389/fphar.2017.00656

Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. & Hutchison, G.R. 2012. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics 4(1): 17. doi:10.1186/1758-2946-4-17

Haq, A., Lobo, P.I., Al-Tufail, M., Rama, N.R. & Al-Sedairy, S.T. 1999. Immunomodulatory effect of Nigella sativa proteins fractionated by ion exchange chromatography. International Journal of Immunopharmacology 21(4): 283-295.

Kaplan, P., Tatarkova, Z., Sivonova, M.K., Racay, P. & Lehotsky, J. 2020. Homocysteine and mitochondria in cardiovascular and cerebrovascular systems. Int. J. Mol. Sci. 21(20): 7698. doi:10.3390/ijms21207698

Karimi, Z., Ghaffari, M., Ezzati Nazhad Dolatabadi, J. & Dehghan, P. 2019. The protective effect of thymoquinone on tert-butylhydroquinone induced cytotoxicity in human umbilical vein endothelial cells. Toxicol. Res. (Camb) 8(6): 1050-1056. doi:10.1039/c9tx00235a

Kern, K., Sinningen, K., Engemann, L., Maiß, C., Hanusch, B., Mügge, A., Lücke, T. & Brüne, M. 2022. Homocysteine as a potential indicator of endothelial dysfunction and cardiovascular risk in female patients with borderline personality disorder. Borderline Personality Disorder and Emotion Dysregulation 9(1): 1-9.

Khader, M. & Eckl, P.M. 2014. Thymoquinone: An emerging natural drug with a wide range of medical applications. Iran J. Basic Med. Sci. 17(12): 950-957.

Kosmas, C.E., Sourlas, A., Silverio, D., Montan, P.D. & Guzman, E. 2019. Novel lipid-modifying therapies addressing unmet needs in cardiovascular disease. World J. Cardiol. 11(11): 256-265. doi:10.4330/wjc.v11.i11.256

Leung, S.B., Zhang, H., Lau, C.W., Huang, Y. & Lin, Z. 2013. Salidroside improves homocysteine-induced endothelial dysfunction by reducing oxidative stress. Evid. Based Complement Alternat. Med. 2013: 679635. doi:10.1155/2013/679635

Lindholm, D., Korhonen, L., Eriksson, O. & Kõks, S. 2017. Recent insights into the role of unfolded protein response in ER stress in health and disease. Frontiers in Cell and Developmental Biology 5: 48. doi:10.3389/fcell.2017.00048

Loughlin, D.T. & Artlett, C.M. 2010. Precursor of advanced glycation end products mediates ER-stress-induced caspase-3 activation of human dermal fibroblasts through NAD (P) H oxidase 4. PLoS ONE 5(6): e11093.

Mahadir Naidu, B., Mohd Yusoff, M.F., Abdullah, S., Musa, K.I., Yaacob, N.M., Mohamad, M.S., Sahril, N. & Aris, T. 2019. Factors associated with the severity of hypertension among Malaysian adults. PLoS ONE 14(1): e0207472. doi:10.1371/journal.pone.0207472

Mansour, M.A., Nagi, M.N., El‐Khatib, A.S. & Al‐Bekairi, A.M. 2002. Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and DT‐diaphorase in different tissues of mice: A possible mechanism of action. Cell Biochemistry and Function 20(2): 143-151.

Medina-Leyte, D.J., Zepeda-García, O., Domínguez-Pérez, M., González-Garrido, A., Villarreal-Molina, T. & Jacobo-Albavera, L. 2021. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int. J. Mol. Sci. 22(8): 3850. doi:10.3390/ijms22083850

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. & Olson, A.J. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30(16): 2785-2791. doi:10.1002/jcc.21256

Murugan, D.D., Md Zain, Z., Choy, K.W., Zamakshshari, N.H., Choong, M.J., Lim, Y.M. & Mustafa, M.R. 2020. Edible bird’s nest protects against hyperglycemia-induced oxidative stress and endothelial dysfunction. Frontiers in Pharmacology 10: 1624. doi:10.3389/fphar.2019.01624

Ochoa, C.D., Wu, R.F. & Terada, L.S. 2018. ROS signaling and ER stress in cardiovascular disease. Molecular Aspects of Medicine 63: 18-29. doi:https://doi.org/10.1016/j.mam.2018.03.002

Oslowski, C.M. & Urano, F. 2011. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 490: 71-92. doi:10.1016/b978-0-12-385114-7.00004-0

Pai, P-Y., Chou, W-C., Chan, S-H., Wu, S-Y., Chen, H-I., Li, C-W., Hsieh, P-L., Chu, P-M.,  Chen, Y-A., Ou, H-C. & Tsai, K-L. 2021. Epigallocatechin gallate reduces homocysteine-caused oxidative damages through modulation SIRT1/AMPK pathway in endothelial cells. The American Journal of Chinese Medicine 49(01): 113-129.

Panda, P., Verma, H.K., Lakkakula, S., Merchant, N., Kadir, F., Rahman, S., Jeffree, M.S., Lakkakula Bhaskar, V.K.S. & Rao, P.V. 2022. Biomarkers of oxidative stress tethered to cardiovascular diseases. Oxidative Medicine and Cellular Longevity 2022: 9154295. doi:10.1155/2022/9154295

Reddy, R.K., Mao, C., Baumeister, P., Austin, R.C., Kaufman, R.J. & Lee, A.S. 2003. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: Role of ATP binding site in suppression of caspase-7 activation. J. Biol. Chem. 278(23): 20915-20924. doi:10.1074/jbc.M212328200

Rotariu, D., Babes, E.E., Tit, D.M., Moisi, M., Bustea, C., Stoicescu, M., Radu, A-F., Vesa, C.M., Behl, T., Bungau, A.F. & Bungau, S.G. 2022. Oxidative stress – Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomedicine & Pharmacotherapy 152: 113238. doi:https://doi.org/10.1016/j.biopha.2022.113238

Sagud, M., Tudor, L. & Pivac, N. 2021. Personalized treatment interventions: nonpharmacological and natural treatment strategies in Alzheimer’s disease. Expert Review of Neurotherapeutics 21(5): 571-589. doi:10.1080/14737175.2021.1906223

Santos, C.X., Tanaka, L.Y., Wosniak Jr., J. & Laurindo, F.R. 2009. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: Roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxidants & Redox Signaling 11(10): 2409-2427.

Sato, K., Nishii, T., Sato, A. & Tatsunami, R. 2020. Autophagy activation is required for homocysteine-induced apoptosis in bovine aorta endothelial cells. Heliyon 6(1): e03315. doi:https://doi.org/10.1016/j.heliyon.2020.e03315

Sies, H. & Jones, D.P. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology 21(7): 363-383. doi:10.1038/s41580-020-0230-3

Sipkens, J.A., Hahn, N., van den Brand, C.S., Meischl, C., Cillessen, S.A., Smith, D.E.C., Juffermans, L.J.M., Musters, R.J.P., Roos, D., Jakobs, C., Blom, H.J., Smulders, Y.M., Krijnen, P.A.J., Stehouwer, C.D.A., Rauwerda, J.A., van Hinsbergh, V.W.M. & Niessen, H.W.M. 2013. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem. Biophys. 67(2): 341-352. doi:10.1007/s12013-011-9297-y

Timkova, V., Tatarkova, Z., Lehotsky, J., Racay, P., Dobrota, D. & Kaplan, P. 2016. Effects of mild hyperhomocysteinemia on electron transport chain complexes, oxidative stress, and protein expression in rat cardiac mitochondria. Molecular and Cellular Biochemistry 411: 261-270.

Ungvari, Z., Csiszar, A., Bagi, Z. & Koller, A. 2002. Impaired nitric oxide-mediated flow-induced coronary dilation in hyperhomocysteinemia: Morphological and functional evidence for increased peroxynitrite formation. Am. J. Pathol. 161(1): 145-153. doi:10.1016/s0002-9440(10)64166-1

Vermot, A., Petit-Härtlein, I., Smith, S.M.E. & Fieschi, F. 2021. NADPH oxidases (NOX): An overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants (Basel) 10(6): 890. doi:10.3390/antiox10060890

Wu, S., Gao, X., Yang, S., Meng, M., Yang, X. & Ge, B. 2015. The role of endoplasmic reticulum stress in endothelial dysfunction induced by homocysteine thiolactone. Fundamental & Clinical Pharmacology 29(3): 252-259.

Wu, X., Zhang, L., Miao, Y., Yang, J., Wang, X., Wang, C-C., Feng, J. & Wang, L. 2019. Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biology 20: 46-59.

Yuan, D., Chu, J., Lin, H., Zhu, G., Qian, J., Yu, Y., Yao, T., Ping, F., Chen, F. & Liu, X. 2023. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis. Frontiers in Cardiovascular Medicine 9: 1109445. doi:10.3389/fcvm.2022.1109445

Zhang, Z., Wei, C., Zhou, Y., Yan, T., Wang, Z., Li, W. & Zhao, L. 2017. Homocysteine induces apoptosis of human umbilical vein endothelial cells via mitochondrial dysfunction and endoplasmic reticulum stress. Oxid. Med. Cell Longev. 2017: 5736506. doi:10.1155/2017/5736506

 

*Corresponding author; email: choykerwoon@uitm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous